A2216

Description

The A2216 is a 1.6W bridged audio power amplifiers designed for portable communication device applications. It provides a very low cost solution by eliminating external components when used with 2.7V to 5.5V-powered circuits. The A2216 has superb THD (Total Harmonic Distortion) at high-power output and excellent power supply rejection with 4 and 8 Ω loads. The A2216 integrated over-temperature and over-current protection circuitry switch the devices off in case of an output short-circuit. A digital input allows the devices to automatically switch into shutdown mode.

The advanced pop & click circuitry, a minimal count of external components and low-power shutdown mode make A2216 idea for wireless handsets, and the gain (Av) of the A2216 is controlled using external resistors.

The space-saving 8-pin MSOP8 package is available.

Advanced Innovation Technology Corp. www.ait-ic.com

Features

- Click and Pop Suppression
- Improved PSRR Greater Than 65dB @ 217Hz
- THD + Noise: 1.6W into 4Ω at 1%
- 2.7 to 5.5V (V_{DD}) Single-Supply Operation
- Ultra Low Shutdown Current: 10nA
- Over-Temperature and Over Current Protection
- No Output Coupling Capacitors required
- External Gain Configuration Capability
- Space-saving 8-pin MSOP Package

Application

- Wireless Handsets
- Portable Audio Devices
- Portable DVD Players
- PDA, MP3, CD Player, Mobile Phone
- Smartphone
- Handheld Battery-Powered Devices

Typical Application

Page 1/14 Rev 1.0

Pin Description

Pin #	Name	Function
1	SHDN	Connect this pin to GND to Shutdown (A2216MS8-H); connect this pin to $V_{\mbox{\scriptsize DD}}$ to
		Shutdown (A2216MS8-L)
2	BIAS	DC Bias Bypass
3	IN+	Non-Inverting Input
4	IN-	Inverting Input
5	OUT+	Positive Differential Output
6	V_{DD}	Power Supply
7	GND	Ground
8	OUT-	Negative Differential Output

Absolute Maximum Ratings

Parameter	Min	Мах	Unit
V _{DD} to GND	-0.3	+7	V
Any Other Pin to GND	-0.3	V _{DD} +0.3	V
Input Current (Latch-up Immunity)	-100	100	mA
Continuous Power Dissipation		362	mW
Electro-Static Discharge (ESD)		1	kV
Operating Temperature Range (T _A)	-40	+85	°C
Storage Temperature (Ts)	-65	+150	°C
Lead Temperature and Time			260°C, 10S

Advanced Innovation Technology Corp.	Page	2/14
www.ait-ic.com	Rev	1.0

Electrical Characteristics

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
V _{DD}	Supply Voltage Range	Inferred from PSRR Test	Inferred from PSRR Test			5.5	V
I _{DD}	Supply Current (Note1)	T _A =-40 to +85°C			6.8	10.4	mA
I _{SHDN}	Shutdown Supply Current	SHDN=V _{DD}	SHDN=V _{DD}		0.01	1	uA
	SHDN Threshold	VIH		V _{DD} x0.7			V
		VIL				V _{DD} x0.3	
VBIAS	Common-Mode Bias Vol	tage (Note2)		V _{DD} /2-5%	$V_{DD}/2$	V _{DD} /2+5%	V
Vos	Output Offset Voltage	Av=2, IN-=OUT+, IN-=BIA	AS		±1	±10	mV
PSRR	Power Supply	Inputs Grounded,	217Hz		65		dB
	Rejection Ratio	V _{RIPPLE} =200mVp-p, R _L =4Ω, V _{IN-} =V _{IN+} =V _{BIAS}	1KHz		63		
Pout	Output Power (Note3)	R _L =4Ω, THD+N=1%, f _{IN} = ⁻	$R_L=4\Omega$, THD+N=1%, $f_{IN}=1KHz$		1.6		W
		R _L =8Ω, THD+N=1%, f _{IN} = ⁻	IKHz	0.8	1.2		
THD+N	Total Harmonic Distortion + Noise	Av=2, R _L =4 Ω , f _{IN} =1KHz, P _{OUT} =1.3W	Av=2, R _L =4Ω, f _{IN} =1KHz, P _{OLIT} =1.3W		0.09		%
		Av=2, R _L =8Ω, f _{IN} =1KHz, F	P _{OUT} =1W		0.05		
	Thermal-Shutdown Three	shold	shold		145		°C
	Thermal-Shutdown Hyst	eresis			0		°C
t _{PU}	Power-Up/Enable from S	hutdown Time			150		ms
t _{SHDN}	Shutdown Time				1		us
V _{POP}	Turn-Off Transient				20		mv

1. VDD=5V. RI =∞. CBIAS=0.1uF to GND. SHDN=GND. TA=25°C. unless otherwise noted

2. V_{DD} =3V, R_L = ∞ , C_{BIAS} =0.1uF to GND, SHDN=GND, T_A =25 $^{\circ}C$, unless otherwise noted.

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
I _{DD}	Supply Current (Note1)	T _A =-40 to +85°C			6	10	mA
I _{SHDN}	Shutdown Supply Current	SHDN=V _{DD}			0.01	1	uA
PSRR	Power Supply	V _{RIPPLE} =200mVp-p,	217Hz		65		dB
	Rejection Ratio	$R_L=4\Omega$, $V_{IN}=V_{IN}=V_{BIAS}$	1KHz		63		
Pout	Output Power (Note3)	R _L =4Ω, THD+N=1%, f_{IN} =	1KHz		0.6		W
		R _L =8Ω, THD+N=1%, f_{IN} =	1KHz		0.4		
THD+N	Total Harmonic	Av=2, R_L =4 Ω , f_{IN} =1KHz,			0.09		%
	Distortion + Noise	P _{OUT} =500mW					
		Av=2, $R_L=8\Omega$, $f_{IN}=1KHz$,			0.05		
		P _{OUT} =350mW					

Note1: Quiescent power supply current is specified and tested without loads on the outputs. Quiescent power supply current depends on the offset voltage when a practical load is connected to the devices.

Note2: Common-mode bias voltage is the voltage on pin BIAS and is nominally $V_{DD}/2$.

Note3: Guaranteed by design.

Advanced Innovation Technology Corp.	Page	3/14
www.ait-ic.com	Rev	1.0

Block Diagram

The A2215 bridged audio power-amplifiers can deliver 1.6W into 4Ω while operating from a single 2.7 to 5.5V supply. The A2216 consist of two high-output-current operational amplifiers configured as a bridge-tied load (BTL) amplifier as shown below.

The gain of the A2216 is set by the closed-loop gain of the input operational amplifier. As shown above the output of the first amplifier serves as the input to the second amplifier, which is configured as an inverting unity-gain follower in both devices. This results in two outputs, identical in magnitude, and 180° out-of-phase.

Bias

The A2216 operate from a single 2.7 to 5.5V supply and contain an internally generated, common-mode bias voltage of $V_{DD}/2$, referenced to ground. Bias provides click-and –pop suppression and sets the DC bias level for the audio outputs. For selection of the value for the bias bypass capacitor (C_{BIAS}), Pin BIAS is internally connected to the non-inverting input of one amplifier, and should be connected to the non-inverting input fo the other amplifier for proper signal biasing.

Advanced Innovation Technology Corp.	Page	4/14
www.ait-ic.com	Rev	1.0

Shutdown

The integrated 100nA, low-power shutdown circuitry reduces quiescent current consumption. As shutdown commences, the bias circuitry is automatically disabled, the A2216 outputs go high impedance and bias is driven to GND.

Note: Connect SHDN to GND to shutdown (A2216MS8-H); connect SHDN to V_{DD} to shutdown (A2216MS8-L)

Current Limit

The A2216 current limit circuitry protects the device during output short-circuit and overload conditions. When A2216 outputs are shorted to either V_{DD} or GND, the short-circuit protection is enabled and the amplifier enters a pulsing mode, reducing the average output current to a safe level. The A2216 remains in this mode until the short-circuit or overload condition is corrected.

Advanced Innovation Technology Corp.	Page	5/14
www.ait-ic.com	Rev	1.0

Typical Performance Characteristics

1. THD + Noise vs. Output Power

```
V_{DD}=3V, R_L=4\Omega, Av=2
```


3. THD + Noise vs. Output Power

 V_{DD} =3V, R_L =4 Ω , Av=4

2. THD + Noise vs. Output Power

 V_{DD} =3V, R_L =8 Ω , Av=2

4. THD + Noise vs. Output Power

V_{DD}=3V, R_L =8Ω, Av=4

Advanced Innovation Technology Corp.Pagewww.ait-ic.comRev

Page	6/14
Rev	1.0

5. THD + Noise vs. Output Power

 V_{DD} =5V, R_L =4 Ω , Av=2

7. THD + Noise vs. Output Power

 V_{DD} =5V, R_L =4 Ω , Av=4

6. THD + Noise vs. Output Power

8. THD + Noise vs. Output Power

 V_{DD} =5V, R_L =8 Ω , Av=4

Advanced Innovation Technology Corp.	Page	7/14
www.ait-ic.com	Rev	1.0

A2216

9. THD + Noise vs. Frequency

11. THD + Noise vs. Frequency

 V_{DD} =5V, R_L=4 Ω , Av=2

10. THD + Noise vs. Frequency

V_{DD}=3V, R_L =8Ω, Av=2

12. THD + Noise vs. Frequency

 V_{DD} =5V, R_L =8 Ω , Av=2

Advanced Innovation Technology Corp.	Page	8/14
www.ait-ic.com	Rev	1.0

A2216

13. THD + Noise vs. Frequency

 V_{DD} =5V, R_L=4 Ω , Av=4

15. Power Dissipation vs. P_{OUT}

 V_{DD} =5V, R_L=4 Ω , Av=2, f=1KHz, THD+N<1%

14. THD + Noise vs. Frequency

 V_{DD} =5V, R_L =8 Ω , Av=4

16. Power Dissipation vs. P_{OUT}

 $V_{\text{DD}}\text{=}3\text{V},\,\text{R}_{\text{L}}\text{=}4\Omega,\,\text{Av=}2,\,\text{f=}1\text{KHz},\,\text{THD+H<}1\%$

Advanced Innovation Technology Corp.	Page	9/14
www.ait-ic.com	Rev	1.0

A2216

17. Power Dissipation vs. $\mathsf{P}_{\mathsf{OUT}}$

 V_{DD} =5V, R_L=8 Ω , Av=2, f=1KHz, THD+N<1%

19. Output Power vs. Supply Voltage

 $R_L=4\Omega$, Av=2, f=1KHz

18. Power Dissipation vs. POUT

 V_{DD} =3V, R_L =8 Ω , Av=2, f=1KHz, THD+H<1%

20. Output Power vs. Supply Voltage R_L =8 Ω , Av=2, f=1KHz

Advanced Innovation Technology Corp.	Page	10/14
www.ait-ic.com	Rev	1.0

A2216

21. PSRR vs. Frequency, V_{RIPPLE}=200mVpp

23. PSRR vs. Frequency, V_{RIPPLE} =200mVpp C_{BP} = C_{IN} =1uF, RL=4 Ω , Av=2, Inputs Grounded

22. PSRR vs. Frequency, V_{RIPPLE} =200mVpp C_{BP} = C_{IN} =1uF, RL=4 Ω , Av=2, Floating Input

24. Supply Current vs. Temperature

Advanced Innovation Technology Corp.	Page	11/14
www.ait-ic.com	Rev	1.0

25. Output Power vs. Load Resistance

 $V_{DD}=5V$

26. Output Power vs. Load Resistance

Advanced Innovation Technology Corp.	Page	12/14
www.ait-ic.com	Rev	1.0

A2216

Package Information

Dimension in MSOP8 Package (Unit: mm)

Advanced Innovation Technology Corp.	Page	13/14
www.ait-ic.com	Rev	1.0

IMPORTANT NOTICE

Advanced Innovation Technology Corp. (AiT) reserves the right to make changes to any its product, specifications, to discountinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

Advanced Innovation Technology Corp.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

Advanced Innovation Technology Corp. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

Advanced Innovation Technology Corp.	Page	14/14
www.ait-ic.com	Rev	1.0